社會網絡分析工具 Social Network Analysis SNA

臺大圖書館學科服務組 范蔚敏 wmfan@ntu.edu.tw

學習動機&先備知識

初學的痛苦/今天的磨難

- 1. 專有名詞 (完全沒聽過!!)
- 各類演算法
 (數學!!理解後可以解讀、畫出最適切的網絡圖與驗證)
- 3. 各種應用案例 (好玩的地方!!)

- •學習社會網絡分析軟體應用
- 軟體: Gephi
- 軟體操作
- 資料處理
- 數據解讀

01 社會網絡分析實際應用 02 社會網絡分析基本概念 03 Gephi軟體入門一基本功能 04 Gephi軟體入門-Overview 05 Gephi軟體入門—Data Lab & Preview 07 實務操作—Layout 08 Gephi Statistic 09 Gephi 篩選Filter

01社會網絡特色與應用 The features & practical application

社會(科學)網絡分析源起

- •緣起:從圖形理論(Graph Theory)發展的量化技巧
 - 量化演算法
 - 圖形視覺化
- 其他學科怎麼看
 - 數學領域 vertex arc
 - 電腦科學 node link
 - 社會科學 actor relation

社會網絡分析特性

和傳統研究方法比較

比較	研究問題	資料蒐集	資料分析	分析項目
傳統量化分析	體重、心血管疾病	公斤、血壓	量化統計檢定	T檢定或相關係數
社會網絡分析	學術研究共著	作者、文章	社會網絡分析	重要的作者、領域分析

差異

- ① 可以將隱性知識視覺化, EX: 關係、合作經驗
- ② 不受量化統計母體樣本的限制
- ③ 利用社會網絡分析演算法探究研究面向

<u>A network of science: 150 years of Nature papers</u>

社會網絡分析面向

- 1) 整體社會網絡的全貌 EX小世界網絡
- 2) 節點與節點彼此的連結, 來定義節點屬性 EX權威性
- 3) 依據節點屬性分群其子群代表的意義 EX學術領域分析
- 4) 子群之間彼此的關係 EX 交流密切與否
- 5) 子群内節點的情形分析 EX子群凝聚力, 各子群内使用者特性
- 6) 子群結構的對應 EX使用者相關推薦

社會網絡分析應用 金曲獎最佳男女歌手提名人創作角色分析

范蔚敏、唐牧群 (2019) 金曲獎最佳男女歌手提名人創作角色分析 關係形式:歌一創作人

1.社群網絡具有相當規模,且社群成員連結程度高, 但是有別於小世界網絡現象,整體網絡平均群聚係數 數值相對較低,顯示音樂工作者彼此之間合作對象多 元,且並未偏好與特定音樂創作人合作之情形。

2.每位音樂工作者合作程度進行分群,顯示整體網絡 有明顯分群,且各分群社群網絡凝聚程度較高。

范蔚敏、唐牧群(2019)。第18屆到第29屆臺灣金曲獎最佳國語男 女歌手提名人創作角色分析。數位典藏與數位人文,(3),43-62。 doi:10.6853/DADH.201904_3.0003

社會網絡分析應用 學術研究者合作情形

Figure 1a

Network of Written Collaboration before 2008 Conference

政治科學領域學者參與研討會對於新社群成員協 作的模式影響

- 1. 資料形式:期刊文獻、問卷調查
- 2. 研究問題: 研討會
- →研究者共同協作論文
- →促進研究者彼此交流專業意見?
- →有更多跨領域學者進入政治學領域?

Berardo, R. (2011). Networking Networkers: An Initial Exploration of the Patterns of Collaboration among the Members of a New Community in Political Science. *PS: Political Science & Politics, 44(1), 69-75. doi:10.1017/S1049096510001885*

Fan, W.-M., Jeng, W., & Tang, M.-C. (2023). Using data citation to define a knowledge domain: A case study of the Add-Health dataset. *Journal of the Association for Information Science and Technology*, 74(1), 81-98. doi:https://doi.org/10.1002/asi.24688

以引用美國國家青少年成人長期研究資料 (the National Longitudinal Study of Adolescent to Adult Health, Add-Health) 的期刊論文為研究範圍,利用作者所下的關 鍵字分析引用資料的期刊文獻主題的發展

社會網絡分析應用環境與兒童肥胖關係

community BMIz (B: right).

Knapp, E. A., Bilal, U., Burke, B. T., Dougherty, G. B., & Glass, T. A. (2018). A network approach to understanding obesogenic environments for children in Pennsylvania. *Connections*, *38*(1), 1-11. doi:doi:10.21307/connections-2018-001

Potter, G. E., Handcock, M. S., Longini, I. M., & Halloran, M. E. (2012). Estimating within-school contact networks to understand influenza transmission. *The Annals of Applied Statistics, 6(1), 1-26, 26. Retrieved from https://doi.org/10.1214/11-AOAS505*

社會網絡分析工具介紹

項目	Ucinet	Gephi
作業系統	Windows	任何支持Java. 6 和OpenGL 的系統
支援演算法擴展	否	是
支持矩陣	是	是
網路規模	中型	大型
原始程式碼開放情況	不開放	開放
付費類型	商業60天試用	免費
基本功能	社會網路資料和其他1-mode及2- mode數據分析,可做矩陣代數和多 元統計分析等	圖像資料探索性分析、關聯式資料分 析、社交網路分析、生物網路分析等
比較	Network File=>Gephi edge Attribute File=>Gephi node 不支援中文資料	Node table Edge table 可處理中文資料
	統計功能較多元	使用介面友善, 視覺化功能佳

社會網絡工具書 Gephi

open source

Gephi Cookbook

Over 90 hands-on recipes to master the art of network analysis and visualization with Gephi

Devangana Khokhar

Network Graph Analysis and Visualization with Gephi

Visualize and analyze your data swiftly using dynamic network graphs built with Gephi

Ken Cherven

Mastering Gephi Network Visualization

Produce advanced network graphs in Gephi and gain valuable insights into your network datasets

02 社會網絡基本觀念 Basic concept of SNA

網絡 =節點+連結= node + edge

Edge Arc Link

喜歡、詢問、 著作、父母…

Actor Vertex Node

個人、產品、 事件、國家

名詞	定義	例子	EX
walk	節點與連結皆可無限計算	金錢流向	(1-2-5-3-5)
path	節點與連結僅能計算一次	病毒感染	(1-2-3-4)
trial	每一條連結進能計算一次 (節點可重複計算)	八卦訊息	(1- <mark>2</mark> -3-5- <mark>2</mark>)
geodesics distance	任兩節點之間最短的path	包裹快遞	(1-2-4)

• Direction

• Value/weight

Graph G $\begin{cases} a \text{ finite set of nodes, N (each node is unique)} \\ a \text{ finite set of edges, E (each edge is unique)} \end{cases}$ • Each edge is a pair (n1,n2) where n1, n2 \in N

概念解釋一有向圖(directed) N = { 1, 2, 3, 4, 5} E = { (1, 2), (1, 5), (2, 3), (3, 4), (4, 2), (4, 5), (5, 1) } All edges are one-way as indicated by the arrows. Edges are ordered pairs.

概念解釋-有向圖+權重

N = { 1, 2, 3, 4, 5} E = { (1, 2), (1, 5), (2, 3), (3, 4), (4, 2), (4, 5), (5, 1) } All edges are one-way as indicated by the arrows. Edges are ordered pairs.

Social Network One Mode

Ego-Centered Network EgoNet

Bipartite Network 2-mode network

1-partite Network 1-mode network

Multimodal Network

Continuing reconstructing

Target

Disease

Disease-Disease

Target-Target

概念解釋一計算圖像可能的連結數

Q: For a set N with n elements, how many possible edges there?

A:

For undirected graphs, the number of pairs in N: = $n \cdot (n - 1) / 2$ For directed graphs, the number of ordered pairs in N: = $n^2 - n = n \cdot (n - 1)$

Gephi軟體安裝(連結)

安裝外掛程式 種類: Layout、Import、Clustering、Metrics

odate	Available Plugins (57)	Downloaded	Installed	l (64) Settings	更新で	可用的外掛程式 (27) 已下載	; 已安裝 (87) 設;
Chec	< for Newest			Search:			
nstall	Name	Category	Source	Convert Excel and csv files to networks	選擇	名稱	種類
	Position Ranking	Appeara	መ መ	Convert excer and csv mes to networks		Desktop Project	Gephi UI
	Newman-Girvan Clustering	Clustering	66	🚓 Community Contributed Plugin		Desktop Timeline	Gephi UI
	Leiden Algorithm	Clustering	66			Desktop Progress	Gephi UI
\square	Column Calculator	Data Lab	66	Version: 1.4.4		Desktop Export Desktop Tools	Gephi UI Gephi III
\square	Publish your network to the	Export	000 000	Author: Clement Levalllois (@seinecle)		Settings Upgrader	Gephi UI
	OpenSeadragon Export	Export	1000 666	Date: 1/9/23		Graphviz Layout	Layout
	SigmaExportor	Export	ww ee	Source: Gephi Thirdparties Plugins	\checkmark	Polygon Shaped Nodes	Layout
	DelinedeEvrenter	Export		Homepage: http://www.clementlevallois.net		EventGraphLayout	Layout
	PolinodeExporter	Export				Circle Pack	Layout
	JSON Exporter	Export	መመ	Diverse Description		Map Of Countries	Layout
	Loxa Web Site Export	Export	କ୍ଷିଦ୍ଧି	Plugin Description		Circular Layout	Layout
	ExportToEarth	Export	କ୍ଷିକ୍ଷି			Isometric Layout	Layout
	FilterFromFile	Filter	ብ ଳି	Convert Excel and csv files to networks (including		GeoLayout	Layout
\square	Link Prediction	Filter	66	dynamic!)		MultiGravity ForceAtlas 2	Layout
\square	KBrace Filter	Filter	660			Network Splitter 3D	Layout
	HttpGraph	Generator	100 666	This plugin helps you import Excel files and csv files into Gephi, by		scale layout plugin	Layout
	Erdős Dányi Conorator	Concrator	1010°	transforming them into networks.		Batik Wrapper	Libraries
	Kinishara Caracter	Generator	50	It takes the rows of your file and let you define which relations should be		Cieem DDDIIVEIS	Libraries

32

Help

Close

活動

Ø ^

Ø

0

Ø

0

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

0 V

已選取的外掛程式 1

03 Gephi軟體入門 ^{基本功能列}

Project 專案 (每次只能開一個)
 >Workspace 空白頁(可同時開啟多個)

Gø

File

Workspace

View

Tools

Data Laboratory

Window

Help

Preview

Gephi 0.10.1 Untitled

Workspace 2 ×

Workspace 1 ×

🕼 Random Graph				
Number of nodes: Wiring probability:	50 0.05			
	確定 取消			

Gephi軟體入門 04 Overview

4.1 Appearance 圖像外觀處理

圖像外觀處理(節點/連結)

Appearance ×	Appearance ×	Appearance × –
Nodes Edges 🏾 🏶 🔊 🗛 न	Nodes Edges 🛛 🏶 🅤 🔺 🕇	Nodes Edges
Unique Ranking	Unique Ranking	album
Size: 10 🗘	Degree ~	舞嬢 (2.28%) ^
	Min size: 1 🗘 Max size: 4 🗘	呼吸 (2.28%) MUSE (2.09%)
	Spline 🝸 🗊	■ 慶幸擁有禁淳佳 (2.02%) ● ○ Y OVT
📾 🚺 Apply	📾 🕞 Apply	📾 🔛 Apply

圖像外觀處理(節點/連結)

想要換節點顏色 Palette... > Palettes

Appearance ×	—	Graph ×
Nodes Edges 🛛 🌳 🕤	€	Dragging (Configure)
Unique Partition Ranking		k
Modularity Class	~	
 8 1 6 7 2 0 3 ▼ 	(19.48%) (14.29%) (14.29%) (14.29%) (12.99%) (10.39%) Palette ▶ Recent	
Layout ×	Standard	
Choose a layout		Palettes >
		All grey
U	li -	
		Generate

節點顏色重新產生,上限20色 Palette... > Generate...

Generate Palette	×
Values count: 9	Limit number of colors 🗹
	8
Presets	
Default ~	Generate
	OK Cancel

Gephi軟體入門 4.2 Overview Layout 圖像呈現佈局

Layout ×	_	
Network Splitter 3D	> ~	
1 布局資訊	🕨 Run	
✓ Network Splitter 3	D	
Z-Maximum Level	0	
Z-Distance Factor	10	
Z-Scale	100.0	
Alfa	65.0	
7-Maximum Level 语	g省 均 栖 敷 佑 音 美 🙆	
Z-maximum levels to compute node clusters. Node column '[z]' is needed in Gephi Data Laboratory. Note: you		
No preset	button to layout irk.	

Save preset...

Presets... Reset 過往設定 重設

基本圖像佈局 Basic Layout			
Layou	t 名	稱	作用
Contra	ictic	on	縮小
Expans	sion		放大
Rotate			90度選轉
Rando	m L	.ayout	隨機分布
Nover	ap		節點不重疊
Noverlap			
speed	3.0	速度	
ratio	10.0	節點不重疊	比率,數值1圖像1
margin	50.0	邊緣	

移動節點

用滑鼠左鍵拖曳要移動的節點

節點訊息 Properties 在Overview的節點資訊 Attributes 在Data Laboratory的節點資訊

靜態資料

Edit × 節點名種	晋 –	
E Valjean - Properties		
Size	100.0	
Position (x)	-87.930305	
Position (y)	17.04457	
Position (z)	0.0	
Color	[122,1,119]	
Label Size	1.0	
Label Color	null	
Label Visible	\checkmark	
Valjean - Attributes		
ld	11	
Label	Valjean 🛄	
Interval	<尋找空値> …	
Modularity Class	1	

動態資料

×

3?

N

C

5

選擇右上角顏色框,可以按左鍵將結點填滿顏色

特定節點放大或縮小 用滑鼠左鍵按住節點 滑鼠向上,節點放大, 滑鼠向下,節點縮小

針對某一節點及其鄰近節點進行著色

節點鉛筆 可增加節點 one click one node

以單一節點為中心, 依照距離塗上不同色

色組顏色可以反置:近/深色→遠/淺色、近/淺色→遠/深色

中心節點無法觸及到的節點 不加以著色

針對節點按右鍵還可以...

刪除 移動到>新分頁或其他分頁 複製到>新分頁或其他分頁 鎖住(在轉換layout時節點不會移動) 解除 在資料實驗室中選取

Id	Label
11	Valjean
48	Gavroche
55	Marius
27	Javert
25	Thenardier
23	Fantine
58	Enjolras
62	Courfeyrac
64	Bossuet
63	Bahorel
65	Joly
24	MmeThenardier
26	Cosette
41	Eponine

全部節點顏色復位(顏色可選)

節點標籤顏色復位

節點標籤大小復位

9	🖲 • T	<u> </u>	A- A- Arial Bold, 32	
---	---------	--	----------------------	--

圖像背景顏色圖像快照 ●

		ľ
ß	🕼 Label text settings	\times
	Nodes Edges Show properties	
	Select attributes to display as labels	
	Id	^
	☑ Label	
	🗌 Weight	~
	確定 取消	

💡 💷 🕶 🔽 🚬 🦕 🏗 🗛 🗛 Arial, 16 🔳 🗟 🔍	
Global Edges Labels	
Background color: 🔲 Zoom Highlight selection 🗸	
Autoselect neighbor 🕢	
Global Edges Labels	
✓ Show	
Edge default color: Scale Selection color	
Use node color	
Global Edges Labels 編輯連結標籤的字體、大小、顏色	
Node 🗹 Edge 🗌	Size: Scaled
Font: Arial, 16 Color: Image: Text of	Color: Text
Size: Size:	隱藏未選取節點 Hide non-selected

52

 \sim

 \sim

Gephi軟體入門 Overview 4.4 Statistic

網絡概覽

Network Overview		
Average Degree	Run	3
Avg. Weighted Degree	Run	3
Network Diameter	Run	3
Graph Density	Run	3
HITS	Run	3
Clustering Coefficient	Run	3
PageRank	Run	3
Connected Components	Run	3
Girvan-Newman Clustering	Run	3
Leiden algorithm	Run	3

節點概覽

Node Overview		
Avg. Clustering Coefficient	Run	3
Eigenvector Centrality	Run	3
Multidimensional scaling	Run	8
連結概覽		
Edge Overview		
Avg. Path Length	Run	0

動態資料

🖻 Dynamic		
# Nodes	Run	0
# Edges	Run	3
Degree	Run	0
Clustering Coefficient	Run	1

Gephi軟體入門 05 Data laboratory & Preview

5.1 Data laboratory

😌 Add node 新增節點

Add no	de	×
8	Label:	
		OK Cancel

輸入標籤就會新增節點 之後自動產生流水號 ld

🕀 Add edge 新增連結

M Add edge ×				
Select the new edge type, source and target nodes:				
Directed Oundirected				
Source no	48 - Gavroche Id-Label ~			
Target no	11 - Valjean 🗸 🗸			
Edge Kind:				
	Ok Cancel			

i Search/Replace 搜尋與取代

Search/Replace			×
Search:			Find next
Replace with:			
Only match whole value			Replace
Normal soarch	lar ovprossion soard	h	Replace all
	iai expression searci		
Case sensitive Regula	r expression replace	ment	
Columns to search/replac	All columns 搜	尋桐	剿位 🗸 🗸 🖌
	All columns		
Search match result:	Label		
	Interval		
	Modularity Class		
	Inferred Class		
			Close

● Import Spreadsheet
 ● Export table
 ○ 正式を構成的
 ○ 正式を構成的
 ○ 正式を構成の
 ○ 正式を構成の

		合併欄位		清除欄位	Ì	填滿欄位				
			II.	I			I		16	M
/ co	Add olumn	Merge columns	Delete column ∽	Clear column Y	Copy data to other column ~	Fill column with a value ∽	Duplicate column ∽		Create a boolean column from regex match ~	Create column with list of regex matching groups ~
新	曾欄位	Ī	刪除欄位	Ì	複製資料	d→Label	複製欄位	Ī		
27 E © (Edit node Open in web	browser	>							
	Select on Ov Select neigh Select relate Delete Move to Copy to	verview bour nodes on table d edges	>							
	Fag node Clear Overwrite da Copy selecte	ata to the other selected ad node(s) column to clip	Ctrl+T nodes oboard Ctrl+R							
≜ 9 ∎ F ❤ 9	Settle Free Set node siz	e								
	Merge node Link to node Duplicate Cell	95 • 5	>							
										56

5.2 Preview

text outline + black background

edge custom color

tag cloud

∨ Nodes		節點
Fixed Border Width		固定邊寬
Border Width	1.0	邊框框度
Border Color	darker	邊框顏色
Opacity	0	透明度
Per-Node Opacity		個別節點透明度
 Node Labels 		節點標籤
Show Labels		顯現標籤
Font	Arial 12 Plain	字體(字形、大小)
Proportional size	\checkmark	比例大小
Color	parent	顏色
Shorten label		縮短標籤
Max characters	30	縮短字元範圍
Outline size	0.0	輪廓大小
Outline color	custom [255,25	輪廓顏色
Outline opacity	80.0	輪廓透明度
Вох		標籤框
Box color	parent	標籤框顏色
Box opacity	80.0	標籤框透明度

 Edges 		連結
Show Edges		顯現連結
Thickness	1.0	厚度
Rescale weight		重新調整權重
Min. rescaled weight	0.1	調整確重
Max. rescaled weigh	1.0	祠 金 催 里 取 小 但
Color	mixed	前在一个时间
Opacity	100.0	透明度
Curved	\checkmark	曲線
Radius	0.0	連結節點
 Edge Arrows 		節點箭頭
Size	3.0	大小

∨ Edge Labels		連結標籤
Show Labels		弱相梗盜
Font	Arial 10 Plain	李體(字形 大小)
Color	original	·」。虚(」))、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、
Shorten label		縮短標籤
Max characters	30	最大字體
Outline size	0.0	輪廓大小
Outline color	custom [255,25	輪廓顏色
Outline opacity	80.0	輪廓透明度

Gephi實務操作 06資料匯入

- 6.1 隨機產生
- 6.2 單筆建置

6.3 Import Spreadsheet6.4 Export and Re-import6.5 Import (Wizard)

6.1 隨機產生有向圖

Tools Window Help
pratory Preview Les I
_ Graph ×
A T 🏀 Mouse selection (Config
<u> </u>
2
Dynamic Graph Example
Multi-Graph Example
Random Graph
Ċ
Apply %

🕼 Random Graph		×
Number of nodes:	50	
Wiring probability:	0.05	
	ОК	Cancel

🕒 Add node	🕒 Add edge 🃸 Search/Replace 🖺 Import Spread
Add node X	Mad edge X
Cabel:	Select the new edge type, source and target nodes:
OK Cancel	Oirected Oundirected
	Source no 48 - Gavroche 🗸
	Target no 11 - Valjean 🗸 🗸
	Edge Kind:
	Ok Cancel

Gephi Excel練習匯入檔案

常見匯入教學用Excel CSV檔案匯入

→實際遇到問題

- 1.中文字碼亂碼
- 2.爬梳資料隱藏字元、
- 3.一旦用Excel編修過後檔案編碼會變成ANSI
 - 需用記事本另存UTF-8格式,以致編修不易

Gephi Excel匯入資料格式

節點 Node table

欄位	ld	Label	Туре
名稱	序號	節點標籤	節點類型
欄數	一組(必要)	一組	可有多組
内容	數字或文字	數字或文字	數字或文字
範例	0	TOM	М
	1	MARRY	F
	2	JENNY	F
	3	TIM	М

Interval 動態資料欄位

連結 Edge table

欄位	Source	Target	Kind
名稱	來源	目標	種類
欄數	一組(必要)	一組(必要)	一組(非必要)
範例	0	1	Like
	1	2	Comment
	2	3	Share
	3	1	Like
	1	2	Share

連結若有重複,在匯入時, Gephi可以自動計算處理, 匯入後數值會顯示在權重欄位

Spreadsheet (Excel)	2000	×
Steps	General Excel Options (1 of 2)	
 General Excel Options Import settings 	Excel file to import: D:\學科業務\8HELP+MASTER+FI A.確	認檔案名稱 <mark>01import_node&edge.xls</mark>
	Sheet:	Import as:
	node B.選擇excel分頁	✓ Nodes table ✓
	Preview:	C.選擇匯入的資料内容
	Id Label timeset of	class g 節點 Node lable
	1789 1789 1A	M 連結 Edge Table
	1780 1780 3A	M
	1782 1782 3A	M
	1783 1783 1A	M
	1787 1787 1A	F
	1546 1546 4A	F
	- Back	Next > Finish Cancel Help

6.3 Import Spreadsheet 匯入資料練習

6.4 Export and Re-import

🛨 Add edge	📸 Search/Replace 📱 Import Spread
í Add ed	ge X
Select the ne	w edge type, source and target nodes:
O Directed	Oundirected
Source node	: 1780 - 1780 🗸 🗸
Target node:	1780 - 1780 🗸 🗸
Edge Kind:	Commmet 🗸 🗸
	Ok 取消

新	增單一連結的種類之後,
其	餘連結的種類要如何新增?
1	[Gephi] Export Table
	> School edge csv
2	[Excel] Fulfill Kind Column
	>Save as xlsx
3	[Gephi] Import Edge List
	> make sure that the number of edges is correct
	> append to existing workspace

🗏 Data Table 🛛 🗵			
Nodes Edges 🥹 Con	figuration 🛛 😌 Add no	de Hdd edge 齢 Se	arch/Replace 📳 Import
Source	Target	Туре	Kind
1789	1783	Undirected	comment
1789	1821	Undirected	
1789	1783	Undirected	

① [Gephi] Export Table > School edge csv

edge	e 🃸 Search/Rep	lace 📳 Import 🕯	Spreadsheet 📱 Export table	🎇 More actions	~		Filter:
			Interval		classname		
4	Export						\times
	儲存於:	📃 点面			< E 💣		
	9 .	名稱		大小	項目類型	修改日期	
	■□□ 最近的項目	schoolda	y	4.08 KB	Microsoft Ex	2018/9/11	^
	ARACHY R H	🔊 schoolda	yedge	4.08 KB	Microsoft Ex	2018/9/11	~
	上面	檔案名稱(N):	schooldayed.ge.csv			儲存	₹
1	<u></u>	檔案類型(I):	Spreadsheet Files (*.csv *.tsv)		~ 取 注	۴
						Options	
	Graph: 💿 F	ull The complete	graph is exported				
	0 4	isible only Only	the current visualized graph is o	exported			

② [Excel] Fulfill Kind Column >Save as xlsx

1	Id	Source	Target	Kind	Label	timeset	Weight
2	0	1789	1821	like			1
3	1	1789	1783	like			1
4	2	1789	1778	like			1
5	3	1789	1722	like			1
6	4	1789	1902	like			1
7	5	1789	1892	like			1
8	6	1789	1775	like			1
9	7	1789	1774	like			1
10	8	1789	1711	like			1
11	9	1789	1770	like			1
12	10	1789	1772	like			1
13	11	1789	1732	like			1
14	12	1789	1779	like			1
15	13	1789	1613	like			1
16	14	1789	1500	like			1

	× 劃另存新檔			×
	← → • ↑ 🕨 > 本機	▶ OS (C:) ▶ 使用者 ▶ 公用	✓	Q
	組合管理 ▼ 新増資料夾			•
	▶ 影片	^ 名稱	^	修改日期
	👟 OS (C:)	v <		>
	檔案名稱(N): schoold	ayedge		~
	存檔類型(T): Excel 活	頁簿		×
obe PDF	作者: peegra 標籤: 新増標	y 記	標題:新增標題 主旨:指定主題	
	f	諸存縮圖		
	▲ 隱藏資料夾		工具(L) ▼ 儲存(S)	取消

 (ϵ)

資訊
 新增
 開啟舊檔
 儲存檔案
 另存新檔
 儲存為 Ac

匯出

③ [Gephi] Import Edge List > make sure that the number of edges is correct > append to existing workspace

🌃 Spreadsheet (Excel)					×	Nodes: 236
步驟	General Exce	l Options (1	/2)			Edges: 5899 Undirected Graph
General Excel Options Import settings	Excel file to i	mport:				Filters ×
	C:\Users\pee	gray\Desktop\s	chooldayedge.xlsx	c .		Reset A+
		Sheet:		Import as:		Library
	schooldayed	ge	Edges	table	\sim	
	Preview:					
	Source	Target	Туре	Kind		Saved queries
	1789 1789	1821	Undirected Undirected	like like	-0	
	<				>	
<上一步(B) 下一:	步》	記成(F)	取消	說明	(H)	Queries

③ [Gephi] Import Edge List > make sure that the number of edges is correct > append to existing workspace

🅼 Import repor	t	×
Source: Stream Im	porterSpreadsheetExcel	
Issues Report		
	No issue fo	ound during import
Graph Type: Undi	rected ~	More options
# of Nodes:	236	New workspace
# of Edges:	5899	 Append to existing workspace 確定 取消

③ [Gephi] Import Edge List > make sure that the number of edges is correct > append to existing workspace

💻 Data Ta	ble ×							
Nodes Edg	es 💿 C	onfiguration	🔁 Add no	ode 🕂 A	dd edge 🃸 Search/R	leplace 📳 Import Sprea	ıdsheet 📳 Export table 🎇	More actio
Source	Target	Туре	Kind	Id	Weight	durtion	counts	
1789	1778	Undirected	share	5901	1.0	740	23	
1789	1732	Undirected	share	5910	1.0	20	1	
1789	1821	Undirected	like	5899	1.0	20	1	
1789	1783	Undirected	like	5900	1.0	300	13	
1789	1722	Undirected	like	5902	1.0	20	1	
1789	1902	Undirected	like	5903	1.0	20	1	
1789	1775	Undirected	like	5905	1.0	320	13	
1789	1774	Undirected	like	5906	1.0	100		
1789	1770	Undirected	like	5908	1.0	20		
1789	1772	Undirected	like	5909	1.0	260	Т	rv it
1789	1779	Undirected	like	5911	1.0	20		
1789	1613	Undirected	like	5912	1.0	60		引淮 人
1789	1500	Undirected	like	5913	1.0	20		· · ·
1789	1759	Undirected	like	5914	1.0	160	「 有有da	ata la
1789	1757	Undirected	like	5915	1.0	1220	32	
1789	1653	Undirected	like	5916	1.0	20	1	
1789	1753	Undirected	like	5917	1.0	60	3	
6.5 Import-(1)Data importer (similarities)

	А	В	С
1	Author	Taste in Ice creams	City preference
2	David	Strawberry	Venice
3	Mary	Strawberry	Venice
4	Jean	Vanilla	Venice
5	Ralf	Vanilla	Paris

	A	В	C	D	E
L :	Author	Taste in Ice creams	Intensity of the Taste	City preference	Intensity of the preference
2	David	Strawberry	3	Venice	1
	Mary	Strawberry	4	Venice	1
13	Jean	Vanilla	3	Venice	1
5	Ralf	Vanilla	3	Paris	1
3					

7-

檔案>Import>Data importer (similarities)

步驟	Select Wizard (1. from 2)	
 Select Wizard 	Category:	Wizard Type:
	Data importer (similarities) Data importer (co-occurrences)	Similarity Computer
	Description: This plugin creates a network by con Feedback and feature requests are w contact: @seinecle on Twitter.	mputing similarities between entities. welcome!

mport wizard		/
步驟	Select a csv or excel file (2. from 4)	
 Select Wizard Select a csv or excel file Options Ready to import 	select file file includes headers (column titles)	
	工作表1 Select the Excel sheet containing the data:	
	Your file should contain: - first col: the name of the entities which will be the nodes in the network - second column: an attribute of this entity - third column: a second attribute of this entity - fourth column: etc	

Main Import Wizard

步驟

Options (3. from 4)

- 1. Select Wizard
- Select a csv or excel file
 Options
- 4. Ready to import

Is there a value attached to each feature, to indicate its strength or intensity?

1	A	В	С	D	E
í.	Author	Taste in Ice creams	Intensity of the Taste	City preference	Intensity of the preference
2	David	Strawberry	3	Venice	1
3	Mary	Strawberry	4	Venice	1
1	Jean	Vanilla	3	Venice	1
5	Ralf	Vanilla	3	Paris	1
5					
			Each attribute shou	ld be followed b	y a column with a roun

 \times

**

螉	Import report
---	---------------

Source: Data importer (similarities):Similarity Computer

取消

確定

Х

6.5 Import-(2) Data importer (co-occurrences)

Authors Author Keywords (stemming clean) 2 Yu J.W., Adams Stransition to young adulthood; use of mental health counseling servic 3 Russell S.T., Toor sexual minor; suicide id; youth Gunn J.F., III, Lessex differ; sport; suicid 4 Ulloa E., Salazar Irisky sexual behavior; sexual assault; sexually transmitted infect; substance us 5 6 Manlove J.S., Ryarisk/protective factor; sexual experi; sexual partn; transition to sex Schreck C.J., Burgreligios; routine act; victim 8 Mellor J.M., Freel religion; substance abus; tobacco; youth Broman C.L. race and mental health servic; young adult mental health 9 10 Balistreri K.S., Jo race and ethnic differ; relationship involv; young adult 11 Lorenzo-Luaces L public health; race; risk factor; suicid 12 Daigle L.E., Teas(psychopathic trait; psychopathi; replic; revictim; victim 13 Nkansah-Amankraprivate religios; public religios; spiritu; suicidal behavior 14 Ehntholt A., Aven prescription; painkiller substance use; lifecourse; race/ethnicity; multilevel analysi;

檔案>Import>Data importer (co-occurrences)

🌃 Import Wizard		×
步驟	Select Wizard (1. from 2)	
1. Select Wizard 2	Category:	Wizard Type:
	Data importer (similarities) Data importer (co-occurrences)	Convert Excel and csv files to networks
	Description:	
	This plugin helps you import Excel or cs Feedback and feature requests are welcon contact: @seinecle on Twitter.	v files into Gephi, based on entities which co-occur line by line. me!

下一步 >

取消

<上一步(B)

Excel資料記得要有表頭

G4	mport Wizard					×
步駒		Select Excel or csv file (2. from 7)				
1. 2. 3. 4. 5. 6. 7.	Select Wizard Select Excel or csv file Select agents Subfields in agents Dynamic network? Options Ready to import	select file 選擇檔案 Image: Select file Image: Select file Image: Select the Excel sheet containing the data: Image: Select the Excel sheet containing the data:	ephi_drones_fullt	確定分	湏	
		<上一步(B) 下一步> :	完成(F)	取消	說明(H)	

Import Wizard 步驟 Select Wizard 1. Select Wizard 2. Select Excel or csv file 3. Select agents 4. Subfields in agents 5. Dynamic network? What are the connections made of? 1. This type of agent:

- 6. Options
- 7. Ready to import

 \times

Example: for a network of co-authors, pick the field of co-authors twice!

🕼 Import Wizard			×	
步驟 1. Select Wizard 2. Select Excel or csv file 3. Select agents 4. Subfields in agents 5. Dynamic network? 6. Options 7. Ready to import	Subfields in agents (4. from 7) applicants_use_me Is this field made of subfields? If so, what is the delimiter?	comma semicolon tab space	欄位是否選 =是否還需 選擇剖析符 Comma Semicolo Tab Space	置有其他子欄 醫繼續剖析 夺號 逗號 n 分號 製表鍵 空白鍵
	Example: Let's imagine you selected "authors" for agents in the p field for "authors" is made of several co-authors, separa => Please choose "semicolon" as a delimiter. (leave the selection empty if no delimiter applies).	previous screen. Suppose that the ted by semicolon.	原始資料, applicants applicants_u MARKOWE PARROT PARROT FLORIDI FLORIDIEN TS LAB ZA INST TEKH	選分號 ISE_ME ETZ FRANZ INE SA <mark>:</mark> SANDERS PROBEL BIOTECHI OPTICHEN ZAPIS I OBR IN KIB I ROBOTIKA PRI
			TS LAB ZA	OPTICHEN ZAPIS I OBR

🌃 Import Wizard

步驟

Dynamic network? (5. from 7)

- 1. Select Wizard
- 2. Select Excel or csv file
- 3. Select agents
- 4. Subfields in agents
- 5. Dynamic network?
- 6. Options
- 7. Ready to import

If you want to create a dynamic network, where is the field for time? Leave blank if the network is not dynamic

eeste blank in the netholik is not dynamie

! Works only for Excel files at the moment (not csv!).

一般靜態資料→下一步	
建立動態資料→選欄位	
注意:僅適用excel檔案 不接受csv	V

applicants_organisations_only	^
applicants_use_me	
cited_count	
cpc_codes_useme	
dois	
extended family size	۷

取消

說明(H)

 \times

Let's imagine you each of your data entry has a time stamp. You could create a network changing in time, where nodes and their connections appear and disappear along a timeline. 2 time formats allowed: 1984, 2014-09-17 (but not 2014-17-09). Dates (1984) but also durations (1984,1986) are allowed in this field. For duration, use the comma to separate the start and end dates.

🕼 Import Wizard

步驟

- 1. Select Wizard
- 2. Select Excel or csv file
- 3. Select agents
- 4. Subfields in agents
- 5. Dynamic network?
- 6. Options
- 7. Ready to import

Options (6. from 7)

- create links between applicants_use_me agents and links between applicants_use_me agents.
- remove duplicates: lines that have exactly the same values for both types of agents will be removed

remove self-loops: when an agent is connected to itself

- □ 於A欄與B欄之間建立連結
 □ 移除兩節點間具有相同數值的重複連結
 □ 移除與自身節點相連的連結
- →同一文章的co-author會產生連結

Х

說明(H)

🕼 Import Wizard				×
步驟	Ready to import (7. from 7)		
 Select Wizard Select Excel or csv file Select agents Subfields in agents Dynamic network? Options Ready to import 	The conversion process will sta A network will be created, whe applicants_use_me are o	art when you click the "Fin me: connected to applicant	iish" button. s_use_me	
	Edge weight	連結權重	兩節點之間連結數connection	
	Frequency	頻率	每一節點出現的次數	
	- The edge weight will represe	ent the number of connect	ions between any two agents	
	- Each node (agent) will have a	an attribute (called "freque	ency") representing how many times this agent was present in the file	

下一步>

完成(F)

取消

說明(H)

<上─步(B)

🕼 Import report

Lanna D

Source:	Data importer	(co-occurrences)	:Convert	Excel and	csv	files to networks
---------	---------------	------------------	----------	-----------	-----	-------------------

 \sim

Issues Report		
Nodes	Issues	83
⚠ problem with line 81 (empty column applicants_use_me). It was skipped in the conversion	WARNING	^
⚠ problem with line 160 (empty column applicants_use_me). It was skipped in the conversion	WARNING	
⚠ problem with line 161 (empty column applicants_use_me). It was skipped in the conversion	WARNING	
⚠ problem with line 165 (empty column applicants_use_me). It was skipped in the conversion	WARNING	
A problem with line 165 (empty column applicants use me). It was skipped in the conversion	WARNING	~

Graph Type: Undirected

of Nodes: 5265

of Edges: 5159

Dynamic Graph: no

Dynamic Attributes: no

Multi Graph: no

New workspace

Append to existing workspace

Try it!
開新分頁命名書目分析
將03import(co-occurrence)_biblio.xlsx練習資料匯入

More options...

Х

Gephi實務操作 07 Layout 運算布局

- Force-Direct Layout 力引導布局
- Circle Layout 圓形布局
- Geo Layout 地理布局
- Others

運算的圖像佈局

7.10pen Ord

S. Martin, W. M. Brown, R. Klavans, and K. Boyack, "OpenOrd: An Open-Source Toolbox for Large Graph Layout," SPIE Conference on Visualization and Data Analysis (VDA)., 2011

適用圖像:無向+權重
主要用途:用於分群
運算方式:力引導+模擬退火法
複雜程度: O(N*log(N))
可運算節點範圍: 100-1000,000(一百萬)
使用連結權重(edge weight): 是

OpenOrd ~ E Image: Stages ^ N Liquid (%) 25 F Expansion (%) 25 F Cooldown (%) 25 F	idge
Image: Stages N □ Stages ^ Liquid (%) 25 Expansion (%) 25 Cooldown (%) 25	
Stages ^ F Liquid (%) 25 F Expansion (%) 25 F Cooldown (%) 25	lum
Liquid (%) 25 F Expansion (%) 25 Cooldown (%) 25	lum
Expansion (%) 25 Cooldown (%) 25	ixe
Cooldown (%) 25	an
Crunch (%) 15	
Simmer (%) 10 🗸	

🗖 OpenOrd	
Edge Cut	1.0
Num Threads	3
Num Iterations	750
Fixed time	0.2
Random seed	-27741084626281

0(min)-1(max) 連結段開的數量 數值1分群越多 1(min) core component數量 100(min)/750(default) 節點固定的時間 0(不固定)-1(固定) 想像成助鐵匠在選擇敲打的時間 基本都是亂數都可以忽略

7.2.1 Force Atlas Jacomy, M.Venturini1 T. Heymann S.and Bastian M.(2014)ForceAtlas2, a Continuous Graph Layout Algorithm for Handy Network Visualization Designed for the GephiSoftware.POLS.9(6):p.1-12

適用資料: 解讀真實資料, 以最少偏誤地角度明確解讀網絡圖像 主要用途:小世界網絡圖、無尺度網絡圖 Small-World Scale-free networks (小的程度中心性的節點很多, 大的程度中心性的節點很少,冪次法則) 複雜程度: O(N²) 可運算節點範圍: 1-10,000(一萬) 使用連結權重(edge weight):是

7.2.1 Force Atlas

Layout ×	-	
Force Atlas 🗸 🗸		
0	🕨 Run	
Force Atlas		
Inertia	0.1	
Repulsion strength	1000.0	
Attraction strength	1.0	
Maximum displacement	100.0	
Auto stabilize function		
Autostab Strength	80.0	
Autostab sensibility	0.2	
Gravity	30.0	
Attraction Distrib.		
Adjust by Sizes	\checkmark	
Speed	1.0	

慣性(數值↑運算速度↑精確率↓)
互斥程度
吸引程度
最大位移量,限制每一節點位移距離,預防部分節點因距離過產生極端互斥
<mark>自動穩動功能(活化靜止的不穩定節點,預防節點忽隱忽現,會減少運算效率)</mark>
自動穩定功能強度(自動往定功能的強度)
自動穩定功能敏感度
重力(數值1節點越向中心集中)
吸引力分布
依尺寸調整避免節點重疊
速度

7.2.2 Force Altas2 改善第一版演算法 V.1

			·
			1
Layout ×		-	
Force Atlas		~	Th
			ΞF
U		🕨 Run	То
Force Atlas			Ар
Inertia	0.1		Ар
Repulsion strength	1000.0		Ð
Attraction strength	1.0		Sc
Maximum displacement	100.0		Str
Auto stabilize function			Su
Autostab Strength	80.0		Gr
Autostab sensibility	0.2		ΞE
Gravity	30.0		Dis
Attraction Distrib.			Lin
Adjust by Sizes	\checkmark		Pre
Speed	1.0		Ed

Layout ×		-						
ForceAtlas 2	~				1	<u>_</u>		
0	🕨 Run							
Threads								
Threads number	3			Force	Altac			F
Performance				TUICE				
Tolerance (speed)	1.0		可	容許的	擺盪程	腹,	數值	↓粁
Approximate Repulsion		節	點距離	拉大,	可形	成較	大	
Approximation		Ba	rnes-l	Hut演算	拿法量	 	的	
⊡Tuning								
Scaling		數	友値↑ 互	a 斥程	€↑ 清	 韦 枥 虔	Ę↓	
Stronger Gravity								
Gravity 100.0								
Behavior Alternatives			椿	摸式	吸引力	互	斥力	
Dissuade Hubs			予	設	線性	線	性	
LinLog mode			L	inlog	線性	對	數	
Prevent Overlap	\checkmark							
Edge Weight Influence		約		個連結	多少	權重,	(

的擺盪程度,數值↓精確率1,不超過1為佳 離拉大,可形成較大圖像 -Hut演算法最佳化的θ

作用

使分群更緊密的結合

94

·個連結多少權重,0=沒有

7.2.3 Multigravity ForceAtlas 2

Layout ×		
Force Atlas		
0		🕨 Ru
Force Atlas		/
Inertia	0.1	
Repulsion strength	1000.0	
Attraction strength	1.0	
Maximum displacement	100.0	
Auto stabilize function		
Autostab Strength	80.0	
Autostab sensibility	0.2	
Gravity	30.0	
Attraction Distrib.		
Adjust by Sizes	\checkmark	
Speed	1.0	

Layout ×		
ForceAtlas 2		
0		👂 Run
Threads		
Threads number	3	
Performance		
Tolerance (speed)	1.0	
Approximate Repulsion		
Approximation	1.2	
Tuning		
Scaling	1000.0	
Stronger Gravity		
Gravity	100.0	
Behavior Alternatives		
Dissuade Hubs		
LinLog mode		
Prevent Overlap	\checkmark	
Edge Weight Influence	1.0	

🗏 Layout 🛛 🕹				
MultiGravity ForceAtlas 2 🗸 🗸 🗸 🗸 🗸				
0	🕨 Run			
Threads				
Threads number	3			
Performance				
Tolerance (speed)	1.0			
Approximate Repulsion				
Approximation	1.2			
Tuning				
Scaling	2.0			
GravityX Scaling	2.5			
GravityY Scaling	2.5			
Stronger Gravity				
Gravity	1.0			
Behavior Alternatives				
Dissuade Hubs				
LinLog mode				
Prevent Overlap				
Edge Weight Influence	1.0			

水平集中

7.3.1 YiFan Hu

Layout ×		-	
Yifan Hu		~	
0		🕨 Run	
∃ Yifan Hu's properties			
Optimal Distance	100.0	優化距離	優化距離: 數值↑, 圖像節點分散、數值↓, 圖像節點越密
Relative Strength	0.2	相關力量	圖像互斥(repulsion)與吸引(attraction)兩力之比例
Initial Step size	20.0	初階尺寸	通常預設是10
Step ratio	0.95	執行比率	在執行演算法時運算與更新時, stepsize的比率
Adaptive Cooling			用運adoptive cooling
Convergence Threshold	1.0E-4		訂演算法停止的能量聚焦程度, 門檻值↓精準率↑
Barnes-Hut's properties			
Quadtree Max Level	10		四叉樹最大程度:數值↑、正確率↑
Theta	1.2		Theta θ:數值↓、正確率↑

7.3.2 YiFan Hu Proportional

運算的方式和功能與 YiFan Hu 相似

差異在於

圖形節點的配置以比例置換(proportional displacement)的方式進行

還有,可以處理較大的網絡圖

7.4 Fruchterman Reingold Fruchterman, T. M. J., & Reingold, E. M. (1991). Graph Drawing by Force-Directed Placement. Software: Practice and Experience, 21(11).

運算方式: 彈簧模型+靜電力 複雜程度: O(N²) 可運算節點範圍: 1-1000 使用連結權重(edge weight): 否!

$_{\rm Layout} \times$			-
Fruchterma	n Reingold		~
0			🕨 Run
Fruchterman Reingold			
Area		500.0	
Gravity		3.0	
Speed		1.0	

定義視覺化圖像區域大小 節點與中心距離的程度 演算法聚焦的速度 數值↑、精準度↓

7.5.1Circular Layout^{*}, Gephi Marketplace, March 2, 2013. 將資料根據設定的屬性(ID、Degree...)排列成圓形, 觀察節點與連結之間的分布 複雜程度: O(N²) 可運算節點範圍: 1-1,000,000(一百萬)

Layout	× B
Circular Layout	~
0	🕞 Run
Circle Properties	
Fixed Diameter	
Diameter size	500.0
Order Nodes by (decreasing)	Node ID \sim
□ Node Placement	
Node Layout Direction	Counter Clockwise 🔍 🗸
Prevent Node Overlap	\checkmark
□ Transition	
Enable Transition	
Transition Steps	100000.0

調整圖像直徑 圖像直徑排序的屬性(降冪)

節點排序的方向:順時鐘、逆時鐘 預防節點重疊(如有勾選無法Fixed Diameter同時作用) 做一個平滑的過渡到布局 過度需要的步驟數量 99

7.5.2 Dual Circle Layout

7.5.3 Circle Pack

Layout ×		-
Circle Pack	Layout	~
0		👂 Run
- Hierarchy	1	
Hierarchy1		Modularity Cla 🧹
Hierarchy2		No Selection \sim
Hierarchy3		No Selection \sim
Hierarchy4		No Selection \sim
Hierarchy5		No Selection \sim

7.5.4 Radial Axis Layout

計算方式:將節點依屬性分組,相似節點分為一組並將其繪製成向外放射的軸線,以此類推適用目的:用於觀察各組之間節點與連結的分布,進而比較各組之間的同質性(homophily) 複雜程度:O(N²) 可運算節點範圍:1-1,000,000(一百萬)

Layout ×	-	-
Radial Axis Layout	~	
0	De Run	
🗆 Layout Tuning		
Scaling Width	5.0	控制節點之間
Resize Nodes	\checkmark	
Node Size	7	重新設定節點
⊟ Axis-Spar Control		
Knockdown Axes/Spars	\checkmark	減少軸的數量
Number of Axes/Spars	5	減成幾之軸(=
Knockdown Range	Top Range 🗸 🗸	減少範圍:tc
☐ Node Placement		
Group Nodes by	Out Degree 🗸 🗸	節點分組的屬
Node Layout Direction	Counter Clockwise 🔍 🗸	節點佈局的方
Order Nodes in Spar/Axis by	Node ID \sim	軸内的節點排
Ascending Order of Spar/Axis		軸的升幕排列
Draw Spar/Axis as Spiral		有勾選→顯現
□ Transition		未勾選→顯現
Enable Transition		做一個平滑的
Transition Steps	100000.0	過度需要的步

的空間

的大小

量(=減少分組數) =撿到剩幾組) p, middle, buttom

性向 **列順序** 順序 社群内的連結 註群之間的連結 回過渡到布局 驟數量

7.6 Geo Layout

使用經緯度來定位節點 複雜程度: O(N²) 可運算節點範圍: 1-1,000,000(一百萬)

📧 Layout 🛛 🗙	$\leftrightarrow \bullet$
Geo Layout	~
0	🕨 Run
Geo Layout	
Scale	1000.0
Latitude	lat 🗸
Longitude	\log \sim
Projection	Mercator \sim
Center	\checkmark
Looping	\checkmark

地理資料匯入格式

Id		Label		Ing	Ingx	lat	lat <mark>y</mark>
	0		0	-92.2244	可空白	34.72944	可空白
	1		1	-81.4422		40.91611	
	2		2	-73.8		42.73333	

整體圖像的大小 緯度 經度 投射投影法(Mercator麥卡托) 放置於圖像中心 持續進行演算

7.7 Event Graph Layout

剛採用此布局時,節點不會整齊的在同一直線上 →調整Vertical Scale+ Jitter Tolerance, 才會慢慢集中

Layout ×	-
Event Graph Layout	~
0	🕨 Run
Time Force Layout	
Scale of Order	40.0
Order	Modularity Class 🛛 🗸 🗸
Set Vertical Force	\checkmark
Vertical Scale	1.0
Strong Gravity Mode	
Gravity	0.1
Jitter Tolerance	0.1
Threads	2
Center	

軸線之間的距離 非列的屬性 影響垂直軸上的節點位置(越緊的節點會靠得更近,越鬆散的越遠) **渔重力模式** 重力 抖動容差: 科動容差 決定當節點撞到其他節點時允許跳轉的節點數量 油數量 可以使水平軸上相同位置的節點更容易相互通過 句中心聚集

7.8 MDS Layout Multi-Dimensional Scaling 多維尺度

計算圖像節點的路徑距離來表示相似度結構分析 二維向量重疊程度來代表相似程度

Statistic>Multidimensional scaling Layout> MDS Layout

Layout ×	-
MDS Layout	~
0	👂 Run
■ MDS Layout	
Network Scale	500.0
Dimension 1	Dimension_1 \sim
Dimension 2	Dimension_2 \sim

7.9 Isometric Layout

Isometric 等軸測投影

在二維平面呈現三維物體的方法, 三條坐標軸的投影縮放比例相同, 並且任意兩條坐標軸投影之間的角度都是120度。

注意 Data laboratory的資料欄位中包含[z] EX: Degree [z] →執行布局 →Computed Z-Level

Layout	× 8
Isometric Layout	~
0	🕨 Run
Isometric Layout	
Z-Maximum Level	1
Z-Distance	10
Scale	80.0
Horizontal Z-Axis	
Reverse 0-Level Origin	

投射的階層數 階層之間的距離 整體網絡大小 水平投射 從Z level=0開始投射

預設 z max level=1

預設 z max level=1 **Reverse 0-Level Origin**

Try it! 在Data Laboratory練習輸入Z值 1. 應用 Isometric Layout 2.

7.10 Network Splitter 3D

Layout ×			-	
Network Sp	litter 3D		~	
0			Run	
Network	Splitter 3D			
Z-Maximum	Level	1		投
Z-Distance	Factor	5		階
Z-Scale		30.0		整
Alfa		5.0		旋

设射的階層數 皆層之間的距離 整體網絡大小 旋轉角度0-360度

Yifan Hu+3D

Frutcherman Reingold+3D
Gephi實務操作 08 Statistic 統計 8.1網絡概觀

Average degree=edges/nodes

Degree 程度=indegree+outdegree 單一節點的連結數 Node A degree =2 Ex: 方大同-林俊傑(1個歌手)

Weighted Degree 加權程度 單一節點【其連結數*各自權重】加總 Node A weighted degree =1*2+1*1=3 Ex: 方大同-林俊傑(合作5次)

Directed Graph 有向圖 weighted InDegree Node B =1*2=2 weighted OutDegree Node A =1*2+1*1=3

Graph Density

Graph Density

the total number of edges present in the graph

⁼ the total number of edges possible in the graph

- Directed possible edges = n(n-1)
- Undirected possible edges = [n(n-1)]/2

Network Diameter網絡直徑

🅼 Graph Distance settings

Distance

The average graph-distance between all pairs of nodes. Connected nodes have graph distance 1. The diameter is the longest graph distance between any two nodes in the network. (i.e. How far apart are the two most distant nodes).

Directed

○Undirected 選擇網絡圖方向

Betweenness Centrality:Measures how often a node appears on shortest paths between nodes in the network.Closeness Centrality:The average distance from a given starting node to all other nodes in the network.Eccentricity:The distance from a given starting node to the farthest node from it in the network.

X

Network Diameter網絡直徑

Distance	the path of pair of vertexes
Eccentricity	the shortest path of a single vertex to the farthest vertex
Radius 半徑	minimum of eccentricity eccentricity = radius \rightarrow central vertex
Diameter 直徑	<pre>maximum of eccentricity eccentricity = diameter → periphery vertex *weighted graph diameter the hops of a vertex to the farthest vertex *If the network is disconnected → the diameter is infinite 無限大</pre>

Eccentricity(A)=3 E(B)=2 E(C)=2 E(D)=2 E(E)=3Diameter=3 Radius=2

Eccentricity(F)=1 E(G)=2 E(H)=2 E(I)=2 Diameter=2 Radius=1

Average path length

the average number of steps along the shortest paths for all possible pairs of nodes. 網絡內所有可能連結最短路徑的平均長度(連結最短路徑長度總和/連結數) It is a measure of the efficiency of information or mass transport on a network

from	to	path	length	
1	2	1,2	1	
1	3	1,3	1	
1	4	1,2,4	2	
1	5	1,2,5	2	
2	3	2,3	1	
2	4	2,4	1	
2	5	2,5	1	
3	4	3,2,4	2	
3	5	3,2,5	2	
4	5	4,2,5	2	
Sum=15 Average=1.5				

Gephi實務操作 Statistic 統計 8.2網絡與節點中心性_ 中介中心性

Network Diameter > Betweenness Centrality

中介中心性(間接中心性) 定義:在節點對之間的最短途徑通過單一節點的頻率 <u>→多數節點須通過該節點以觸及其他節點</u>

$$C_B(i) = \sum_{j < k} g_{jk}(i) / g_{jk}$$

g*jk*(i)=the number of geodesics that actor *i* is on j k 兩節點之間通過 i 的最短捷徑次數

g*jk* = the number of geodesics connecting *jk* 連結 j k 兩節點的最短捷徑個數

k

Gephi實務操作 Statistic 統計 8.3網絡與節點中心性_ 接近中心性

Network Diameter > Closeness Centrality

Closeness Centrality接近中心性 (directed graph) $C(x) = -\frac{N}{\sum_{y} d(x, y)}$ 節點距離加總→取倒數 定義: 該節點到所有節點之最短距離總和之倒數 意涵: 在最短時間内, 某樣東西流經整個網絡 數值越大代表與其他多數節點的距離越短 某一資訊可以透過該接近中心性高的節點迅速傳達給網絡内的多數的其他節點 舉例: (1)人際關係, 接近中心性越高, 個性越合群 (2)病毒散播,接近中心性越高,越容易感染

Gephi實務操作 Statistic 統計 8.4 網絡與分群_Modularity

Modularity

Modularity settings \times Modularity Community detection algorithm. 有助於分群會增加演算時間 Randomize Produce a better decomposition but increases computation time 🗸 Use weights Use edge weight 使用連結權重 Resolution: Lower to get more communities (smaller ones) and higher than 1.0 to get less communities (bizzer ones). 1.0 可增加分群結果 <1 可減少分群結果 >1取消 確定

Gephi實務操作 Statistic 統計 8.5 網絡與分群Girvan-Newman Clustering

Gephi實務操作 Statistic 統計 8.6 網絡與分群_MDS

Multi-dimensional Scaling

Multi-dimensional Scaling

以距離遠近在多維空間地圖上呈現節點的相似性或相異性 節點間距離越小代表相似程度越高

Multidimensional Scaling settings

Select the number of dimensions for the resulting configuration:

 $\bigcirc 2 \quad \bigcirc 3 \quad \bigcirc 4 \quad \bigcirc 5 \quad \bigcirc 6 \quad \bigcirc 7 \quad \bigcirc 8 \quad \bigcirc 9 \quad \bigcirc 10$

Treatment of edges:

- Don't use edge weights
- Edge weights as distances / dissimilarities
- Edge weights as proximities / similarities

相似性

- Treatments of distances in stress calculation:
 - 節點長距離節點降權重與短距離節點升權重) Downweight large distances and upweight small one
- Weigh distances equally

節點間權重距離等同

選擇運算的空間維度,通常是2D或3D

Gephi實務操作 09 Filter 篩選

- 1. Attributes節點屬性
- 2. Dynamic動態
- 3. Edges連結
- 4. Operator操作
- 5. Topology拓樸學
- 6. Save Queries 儲存篩選條件

Filter 將符合條件的節點保留在畫面上 Select 保留整個網絡圖並將符合條件的節點凸顯出來

Gephi實務操作 Filter 篩選 9.1 Attribute

Attributes

Dataset: school day

- 1) Equal: 等於篩選條件
- 2) Inter Edges: 著重在分群後單一子群的内部(within)連結 [inter edge within a group]
- 3) Intra Edges: 用來找出各分群之間跨群(across-group)的連結路徑 [intra edges across-group]
- 4) Non-null: 隱藏圖像的缺值(missing values)的節點與連結
- 5) Partion: 選擇節點屬性(node)以利觀察網絡內的子群體
- 6) Partion Count:利用節點次數(node)來篩選要分析的子群體
- 7) Range: 選擇連結(edge)的屬性範圍以利觀察網絡特定節點群
- 8) Filter by label list: 利用記事本儲存節點標籤, <u>《[test 記事本</u> 鎖定特定節點進行篩選 a label, a row ^{檔案[] 編輯[] 編輯[] 格式[0}

1819

Attributes 1) Equal

① 選擇篩選的屬性
 ② 輸入要篩選的對象: 1A(班級) 按下OK

③ 選擇Filter

Attributes 2) Inter Edges

著重在分群後單一子群的內部(within)連結, 用於處理同質性較高的網絡或密度較高的網絡

_

~

~

^

v

Attributes 3)Intra Edges

著重分群後跨群(cross-group)之間連結, 用來找出各分群之間的連結路徑

~

v

^

Α

V

Attributes 4) Non-null

隱藏圖像的缺值(missing values)的節點與連結 注意:範例資料資料集未有空值,操作前請在範例資料集自行新增節點

Attributes 5) Partition

選擇屬性以利觀察網絡內的子集, EX: 1B 可選多個子群一同觀察

v

^

V

Attributes 6) Partion Counts

利用節點次數來篩選要分析的子群體, 可鎖定特大或集小的節點群

14

Attributes 7) Range

選擇連結(edge)的屬性範圍以利觀察網絡特定節點群

Gephi實務操作 Filter 篩選 9.2 Edges

Edges

Dataset: Multigraph Example

- 1) Edge type:用來篩選不同種類的連結
- 2) Edge Weight:利用連結權重值篩選需要的連結
- 3) Mutual Edge: 篩選單向連結, 僅保留雙向連結
- 4) Self-Loop: 移除節點的自我連結(自環)

Edges 1) Edge type 用來篩選不同種類的連結

Edges 2) Edge weight 利用連結加權篩選需要的連節

Edges 3) Mutual Edges

篩選單向連結,僅保留雙向連結

Edges 4) Self-Loop

移除節點的自環連結 →移除節點自己連自己的連結 →該節點與其對外連結都不會消失 (自環連結會影響中心性程度的計算)

Gephi 實務操作 Filter 篩選 9.3 Operator

Operator

Dataset: school day

- 1) Intersection: 篩選交叉節點 +Attribute>PartitionCounts>Degrees
- 2) Mask(Edges): 篩選特定範圍連結
- 3) NOT(Edges): 不顯示特定連結 +Attribute>Inter/Intra Edges
- 4) NOT(Nodes): 不顯示特定節點
- 5) UNION: 聯合設定多個篩選條件 + Attribute > Equal or Partition
5) UNION+Equal/Partition

Gephi實務操作 Filter 篩選 9.4 Saved queries

Saved Queries

2

完成下列兩步驟後 Saved queries 出現已存的篩選組合

3 選取要設定的篩選組合
Ex: 1B與2B兩班女同學來往關係
Partion > 1B and 2B

Equal(gender) > F [記得按OK] 將篩選組合重新命名,再儲存

注意:一定要再Queries視窗先命名, 儲存到Saved Queries就無法命名